## ON THE PROBLEM OF ENCOUNTER IN SECOND-ORDER SYSTEMS WITH IMPULSIVE AND NONPARALLEL CONTROLS

PMM Vol. 34, №2, 1970, pp. 208-218<br>G. K. POZHARITSKII<br>(Moscow)<br>(Received June 16, 1969)

Two problems on the minimax of the time until encounter of the objects are considered. The control vectors of the pursuer and pursued object are assumed to be of fixed direction and nonparallel. Each of the vectors is subject to an "impulsive" restriction. The paper is related to $[1,2]$ in subject matter. The results of computations carried out by Iu. A. Kraiushkin are cited.

1. Let the relative motion of the pursuer $P\left(y_{1}, y_{2}\right)$ and pursued object $E\left(z_{1}, z_{2}\right)$ in the variables $x_{1}=y_{1}-z_{1}, x_{2}=y_{2}-z_{2}$ be described by the equations

$$
\begin{align*}
& x_{1}=x_{2}+v \cos \varphi=x_{2}+v \gamma_{1} \\
& \dot{x_{2}}=-x_{1}+v \sin \varphi+u=-x_{1}+v \gamma_{2}+u \tag{1.1}
\end{align*}
$$

and let the controls $u$ and $v$ be subject to the restrictions

$$
\begin{array}{ll}
\mu(\tau)=M-\int_{0}^{\tau}|u| d \tau \geqslant 0, & M=\mathrm{const}>0  \tag{1.2}\\
\nu(\tau)=N-\int_{0}^{\tau}|v| d \tau \geqslant 0, & N=\mathrm{const}>0
\end{array}
$$

The control $v(\tau)$ is formed in accordance with the phase vector $\left(x_{1}, x_{2}, \mu, v\right)$ of the system; moreover, the pursuer also knows the control $v(\tau)$, i. e. the objects are discriminated,

$$
\begin{aligned}
& v(\tau)=v\left[x_{1}(\tau), x_{2}(\tau), \mu(\tau), v(\tau)\right] \\
& u(\tau)=u\left[x_{1}(\tau), \ldots, v(\tau), v(\tau)\right]
\end{aligned}
$$

Restrictions (1.2) admit of controls in the form of impulsive, $\delta$-functions $u=\mu_{1} \delta$, $v=v_{1} \delta$, so that we shall assume that the variables in this case vary according to the formulas

$$
\begin{align*}
x_{1}(\tau) & =x_{1}(\tau-0)+v_{1} \gamma_{1}, & x_{2}(\tau) & =x_{2}(\tau-0)+v_{1} \gamma_{2}+\mu_{1} \\
\mu(\tau) & =\mu(\tau-0)-\left|\mu_{1}\right|, & v(\tau) & =v(\tau-0)-\left|v_{1}\right| \tag{1.3}
\end{align*}
$$

We define a "permissible trajectory" $x_{1}(\tau), x_{2}(\tau), \mu(\tau), \nu(\tau)$ as a trajectory with a finite number of jumps which is everywhere continuous on the right and satisfies Eqs. (1.1) together with the Eqs. $\mu^{\cdot}=-|u|, v=-|v|$ almost everywhere. A pair of equations realizing a permissible trajectory will be called "mutually permissible". It is to this class that we confine our solution of the problem. We shall call the set of quantities $x_{1}, x_{2}, \mu, \nu$ the "phase vector" and denote it by $z$. The possibility of jumps requires refinement of the notion of "encounter".

Definition 1.1. Let ( $x_{1}, x_{2}, \mu, v$ ) be the initial point or the left-hand limits of the trajectory as $t \rightarrow T-0$, and let $v=v_{1}\left(x_{1}, \ldots, v\right) \delta$ be the impulsive control of the pursued object. If there exist an impulsive control $u=\mu_{1} \delta$ and a number $0 \leqslant \lambda \leqslant 1$ which satisfy the equations

$$
x_{1}+\lambda \nu_{1} \gamma_{1}=0, \quad x_{2}+\lambda \nu_{1} \gamma_{2}+\mu_{1}=0
$$

then the set $\left(x_{1}, x_{2}, \mu, v, v_{1}\right)$ which includes the impulse $v_{1}$ in addition to the phase vector will be called the "encounter" and the quantity $T$ the "instant of encounter". We note that an encounter is realized if and only if a closed segment with the origin $\left(x_{1}, x_{2}\right)$ and the components $\left(v_{1} \Upsilon_{1}, v_{1} \gamma_{2}\right)$ has at least one point in common with the closed segment $x_{2}=0,\left|x_{1}\right| \leqslant \mu$.

We introduce the following new variables:

$$
\begin{gathered}
\eta_{1}=x_{1} / \mu, \quad \eta_{2}=x_{2} / \mu, \quad \alpha=v / \mu \\
u_{1}=u / \mu, \quad v_{1}=v / \mu
\end{gathered}
$$

For finite $u$ and $v$ expressions (1.1), (1.2) give us the equations

$$
\begin{gather*}
\eta_{1}^{*}=\eta_{2}+\eta_{1}\left|u_{1}\right|+v_{1} \eta_{1}, \quad \eta_{2}^{*}=-\eta_{1}+\eta_{2}\left|u_{1}\right|+u_{1}+v_{1} \gamma_{2} \\
\dot{x}=-\left|v_{1}\right|+\alpha\left|u_{1}\right| \tag{1.4}
\end{gather*}
$$

Equations (1.3) become

$$
\begin{align*}
\eta_{1}^{\prime}(\tau)=\lambda\left[\eta_{1}+v_{1} \gamma_{1} / \mu\right], & \eta_{2}^{\prime}(\tau)=\mp 1 \pm \lambda\left(1 \pm v_{1} \gamma_{2} / \mu\right)  \tag{1.5}\\
\alpha^{\prime}(v)=\lambda\left[\alpha-\left|v_{1}\right| / \mu\right], & \lambda=\mu /\left(\mu-\left|\mu_{1}\right|\right)
\end{align*}
$$

Here the upper combination corresponds to $\mu_{1}>0$ and the lower to $\mu_{1}<0$; the quantities $\eta_{1}, \eta_{2}, \alpha$ are the left-hand limits or initial point.


Fig. 1

We propose to solve the problem of finding a pair of strategies $u^{\circ}, v^{\circ}$ which yield the saddle point of the cost $T(u, v)$ of the game. As will be shown below, saddle strategies do not always exist. In certain cases it is possible only to specify a strategy $u^{\circ}$ and a sequence of strategies $v^{\circ}(\varepsilon)$ for which

$$
\min _{u} \sup _{v} T=-\sup _{v} \min _{u} T=\lim _{\varepsilon \rightarrow 0} \sup _{v \varepsilon} \min _{u} T=T^{\circ}
$$

where the limit function $\lim v_{8}$ results in encounter at $T_{1}<T^{\circ}$ as $\varepsilon \rightarrow 0$. If there exists a $v^{n}$ such that encounter does not occur for any $u$ for $v=v^{\circ}$, this $v^{\circ}$ is also "optimal".
2. Let us direct the axis $\eta_{2}$ downwards and consider the unit semicircle $\left(a_{1}, a_{2}, b_{1}\right)$ in the plane $\eta_{1} \eta_{2}$. Next, let us represent the several phase vectors ( $\left.\eta_{1}, \eta_{2}, \alpha\right)$ by means of the point triplets $\left(g_{2}, g, g_{1}\right),\left(c_{2}, c, c_{1}\right),\left(e_{1}, e, e_{1}\right)$
(see Fig. 1). Each of the triplets, e. $g .\left(g_{2}, g, g_{1}\right)$ corresponds to a point $g\left(\eta_{1}, \eta_{2}\right)$ and an arrow $\left(g_{2}, g_{1}\right)$ of length $2 \alpha$ parallel to the radius $\left(0, a_{2}\right)$ forming the angle $\varphi$ with the axis $\eta_{1}$.

Formulas (1.5) indicate that the impulsive control $u=\mu_{1} \delta<0$ transforms the vector $\left(g_{2}, g, g_{1}\right)$ into the vector $\left(g_{2}{ }^{\prime}, g^{\prime}, g_{1}{ }^{\prime}\right)$ by way of a similarity transformation along the straight lines $\left(a_{1}, g_{1}\right),\left(a_{1}, g_{2}\right)$. By virtue of the linearity of the problem, the optimal control changes sign with a change in the signs of $\eta_{1}, \eta_{2}$, while the optimal time remains unchanged. We shall therefore confine our attention to the domain $\eta_{1}>0$ and stipulate that $\varphi$ is acute.

The same problem for $\varphi=\pi / 2$ is solved in [2]; the control $u^{\bullet}=-\mu_{1}{ }^{\circ} \delta$. The control in this problem is impulsive and must be chosen on the basis of the equation

$$
R^{\prime}-\sqrt{\eta_{1}^{\prime 2}+\eta_{2}^{\prime 2}}=1-\alpha^{\prime}
$$

where $\eta_{1}{ }^{\prime}, \eta_{2}{ }^{\prime}, \alpha^{\prime}$ are replaced by the right sides of (1.5). On the other hand, if the latter equation is fulfilled for $\mu_{1}{ }^{\circ}=0$, the $u^{\circ}(v)<0$ must be chosen from the condition $R_{1}{ }^{\circ}+\alpha^{\circ}=0$.

The control $v^{\circ}$ can be assumed to equal zero or to any positive value as long as the arrow ends $g_{2}$ and $g_{1}$ remain inside the unit semicircle. On the other hand, if one of them, let us say $g_{2}$, lies outside the semicircle, the control $v^{\circ}=-v \delta<0$ takes the point out of the semicurcle and encounter cannot occur at any subsequent time. Upon realization of an optimal control $u^{\circ}$ this does not occur and encounter takes place after the optimal time $T^{\circ}=2$ arc $\operatorname{tg}\left[\eta_{1} /\left(1-\eta_{2}-\alpha\right)\right]$. On the other hand, if the chosen impulse $\mu_{1}$ is smaller than $\mu_{1}{ }^{\text {* }}$, the point $g_{2}$ leaves the semicircle prior to encounter, and encounter does not ensue.

Let us begin our analysis of the general case and choose the smallest possible impulsive control $u^{\circ}=\mu_{1}{ }^{\circ} \delta<0$ for which none of the points $g_{1}, g_{2}, c_{1}, c_{2} \ldots$ can leave the semicircle for a subsequent realization of $u=v=0$. Let the point $g_{1}$ lie to the right of the straight line $\left(a_{1} a_{2}\right)$ and let $R+\alpha=\sqrt{\eta_{1}{ }^{2}+\eta_{2}{ }^{2}}+\alpha>1$, i.e. let the phase vector lie in the domain $D_{1}{ }^{\bullet}$ defined by the inequalities

$$
\begin{gathered}
D_{1}^{\bullet}\left[\psi_{1}=\left(\eta_{1}+\alpha \gamma_{1}\right) \cos \theta-\sin \theta\left(1-\eta_{2}-\alpha \gamma_{2}\right)>0, \theta=\varphi / 2+\pi / 4,\right. \\
R+\alpha>1]
\end{gathered}
$$

2.1. If the phase vector lies in the domain $D_{1}{ }^{\circ}$ and the control $v^{\circ}=0$ as long as the point $g_{1}$ is inside the semicircle, and if $v^{\circ}=v \delta>0$ when it leaves the semicircle, the encounter cannot occur for any control $u$.

Proof. The derivative $(R+\alpha)^{\circ}$ satisfies the following estimate in the domain $D_{1}{ }^{\circ}$ :

$$
(R+\alpha)=(R+\alpha)\left|u_{1}\right|+\left(\eta_{2} / R\right) u_{1} \geqslant(R+\alpha-1)\left|u_{1}\right| \geqslant 0
$$

This means that $R+\alpha$ does not decrease and that the point $g_{1}$ will lie outside the semicircle at the instant of emergence of the point $g$ onto the radius ( $0, a_{2}$ ). At this instant or some what earlier it is possible to realize $v=v \delta>0$ so that the point $g$ will lie outside the semicircle which is the attainability domain of zero [3] until emerging onto the radius $\left(0, a_{2}\right)$. The proof is now complete.
2.2. Following 2.1 , let us choose a control $u^{\bullet}=\mu_{1}{ }^{\circ} \delta<0$ on the basis of the condition $R^{\prime}+\alpha^{\prime}=1$ on the surface $R+\alpha=1$ in the domain $D_{1}\left[\psi_{1}>0, R+\right.$ $+\alpha \leqslant 1]$ bounding the domain $D_{1}^{*}$. We choose this control in the form

$$
\begin{gather*}
\lambda_{1}^{\bullet}=2\left(1-\eta_{2}-\alpha\right) /\left[\eta_{1}^{2}+\left(1-\eta_{2}\right)^{2}-\alpha^{2}\right]  \tag{2.1}\\
\lambda^{\bullet}=\mu /\left(\mu-\left|\mu_{1}^{\bullet}\right|\right)
\end{gather*}
$$

If an impulsive control $v=v_{1} \delta$ has been realized for the vector $\left(\eta_{1}, \eta_{2}, \alpha\right)$ in the domain $D_{1}$ and if the point

$$
\left(\eta_{1}+\left(v_{1} / \mu\right) \gamma_{1}, \quad \eta_{2}+\left(v_{1} / \mu\right) \gamma_{2}, \alpha-\left|v_{1}\right| / \mu\right)
$$

has remained in the domain $D_{1}$, these values must be substituted in place of $\eta_{1}, \eta_{2}, \alpha$ in formula (2.1). This note is also valid for all the subsequent expressions for $\lambda_{2}{ }^{\circ}, \lambda_{3}{ }^{\circ}$, $\lambda_{4}{ }^{\text {c }}$. If $R+\alpha=1$, the final control $u_{1}{ }^{\circ}$ obtained from the condition $(R+\alpha)=0$ is realized in accordance with the condition

$$
\begin{equation*}
u_{1}^{0}=\left(1-\eta_{2}\right)^{-1}\left[v_{1}\left(\eta_{1} \gamma_{1}+\eta_{2} \gamma_{2}\right)-\left|c_{1}\right| R \mid\right. \tag{2.2}
\end{equation*}
$$

2.3. Let us choose the control $u^{\circ}=\mu_{1}{ }^{\circ} \delta$ on the basis of the condition ( $\eta_{1}{ }^{\prime}+$ $\left.-\alpha^{\prime} \gamma_{1}\right)^{2}+\left(\eta_{2}^{\prime}+\alpha^{\prime} \gamma_{2}\right)^{2}=1$ of arrival of the point on the arc $\left(a_{2} a_{3}\right)$ for the vector $\left(c_{2}, c, c_{1}\right)$ corresponding to the position of the point $c_{1}\left(\eta_{1}+\alpha \gamma_{1}, \eta_{2}+\alpha \gamma_{2}\right)$ between
the straight lines $\left(a_{1} a_{3}\right)$ and $\left(a_{1} a_{2}\right)$ in the domain

$$
D_{2}\left[\begin{array}{l}
\psi_{1} \leqslant 0, \psi_{2}=\left(\eta_{1}+\alpha \gamma_{1}\right) \gamma_{1}-\gamma_{2}\left(1-\eta_{2}-\alpha \gamma_{2}\right)>0 \\
r^{2}=\left(\eta_{1}+\alpha \gamma_{1}\right)^{2}+\left(\eta_{2}+\alpha \gamma_{2}\right)^{2} \leqslant 1
\end{array}\right]
$$

The quantity $\lambda_{2}{ }^{\circ}$ is of the form

$$
\begin{equation*}
\lambda_{2}{ }^{\circ}=2\left(1-\eta_{2}-\alpha \gamma_{2}\right) /\left[\left(\eta_{1}+\alpha \gamma_{1}\right)^{2}+\left(1-\eta_{2}-\alpha \gamma_{2}\right)^{2}\right] \tag{2.3}
\end{equation*}
$$

If $\lambda_{2}{ }^{\circ}=1$, the final control $u_{1}{ }^{\circ}<0$ determined from the condition $\left(\lambda_{2}{ }^{\circ}\right)^{*}=0$ is realized in the form

$$
\begin{gather*}
u_{1}^{\circ}=-\left(1-\eta_{2}-\alpha \gamma_{2}\right)^{-1}\left[\left(\eta_{1} \gamma_{2}-\eta_{2} \gamma_{1}\right) \alpha+\left(\eta_{1} \gamma_{1}-\eta_{2} \gamma_{2}-\alpha\right)\right. \\
\left.\times\left(\left|v_{1}\right|-v_{1}\right)\right] \tag{2.4}
\end{gather*}
$$

It is geometrically self-evident that the points $e_{1}{ }^{\prime}, e_{2}{ }^{\prime}$ cannot leave the semicircle during the realization of $u_{1}^{i}$ as long as the point $e\left(\eta_{1}, \eta_{2}, \alpha\right)$ lies in the domain $D_{2}$.
2.4. Passage to the vector ( $e_{2}{ }^{\prime}, e^{\prime}, e_{1}$ ) in the domain $D_{3}{ }^{\prime}\left[\psi_{2} \leqslant_{5}^{\prime} 0, \psi_{3}=\eta_{1}-\right.$ $\left.-\alpha \gamma_{1}>0\right]$ can be hazardous for the vector ( $e_{2}, e, e_{1}$ ) corresponding to the point $e_{1}$ situated no further to the left than the straight line $\left(a_{1} a_{3}\right)$ and to the point $e_{2}$ situated to the right of the straight line $\eta_{2}=0$. The hazard consists in the possibility, that the point $e_{2}^{\prime}$ will reach the semicircle in the neighborhood of the point $b_{1}$.
2.5. If we set $v^{\circ}=0$ in the domain

$$
D_{3}^{\circ}\left[\psi_{2} \leqslant 0, \psi_{3}>0, \rho^{2}=\eta_{1}^{2}+\eta_{2}^{2}-\alpha^{2}+2 \alpha \gamma_{2}>1\right]
$$

as long as the point $e_{2}^{\prime}$ lies inside the semicircle and if $v^{\circ}=-v_{1} \delta$ once it emerges beyond the semicircle, the encounter is impossible for any control $u$. The proof is similar to that of Subsect. 2.1.
2.6. Let us choose the quantity $\lambda_{3}{ }^{\circ}$ in the domain $D_{3}\left[\psi_{2} \leqslant 0, \psi_{3}>0, \rho^{2} \leqslant 1\right]$ on the basis of the equation $\rho^{\prime 2}=\eta_{1}^{\prime 2}+\eta_{2}^{\prime 2}-\alpha^{\prime 2}+2^{1} \alpha^{\prime} \gamma_{2}=1$ in the form

$$
\begin{equation*}
\lambda_{3}^{\circ}=2\left(1-\eta_{2}-\alpha \gamma_{2}\right) /\left[\eta_{1}^{2}+\left(1-\eta_{2}\right)^{2}-\alpha^{2}\right] \tag{2.5}
\end{equation*}
$$

For $\lambda_{3}{ }^{\circ}=1$ the final control $u_{1}{ }^{\circ}$ can be determined from the condition $\left(\lambda_{3}{ }^{\circ}\right)=0$ in the form $u_{1}^{\circ}=+\left[\left(\eta_{1} \gamma_{1}+\eta_{2} \gamma_{2}\right) v_{1}+\left(\alpha-\gamma_{2}\right)\left|v_{1}\right|\right] /\left(1-\eta_{2}-\alpha \gamma_{2}\right)$.
2.7. Let us find a jump $\mu_{i}^{*}<0$ for the vector $\left(d_{2}, d, d_{1}\right)$ with the point $d_{2}$ lying to the left of the axis $\eta_{1}=0$ and the point $d_{1}$ lying to the left of the straight line $\left(a_{1}, a_{3}\right)$ in the domain $D_{1}\left[\psi_{2} \leqslant 0, \psi_{3} \leqslant 0, \psi_{4}=\eta_{1} \gamma_{2}-\left(1+\eta_{2}\right) \gamma_{1} \leqslant 0\right]$ We choose this jump from the condition of arrival of the point $d^{\prime}$ at the straight line ( $b_{1} a_{3}$ ) in the form

$$
\begin{equation*}
\lambda_{4}^{\circ}=2\left(1-\eta_{2}-\eta_{1} \operatorname{tg} \varphi\right) /\left(\eta_{1}^{2}+\left(1-\eta_{2}\right)^{2}-\eta_{1}^{2}{\gamma_{2}^{2}}^{2}\right. \tag{2.7}
\end{equation*}
$$

For $\lambda_{4}{ }^{\circ}=1$ we find the control $u_{1}{ }^{\circ}$ from the condition $\left(\lambda_{4}{ }^{\circ}\right)=0$ in the form

$$
\begin{equation*}
u_{1}^{\bullet}=\left(\eta_{2} \lg \varphi+\eta_{1}\right) /\left(1-\eta_{2}+\eta_{1} \operatorname{tg} \varphi\right) \tag{2.8}
\end{equation*}
$$

Beginning our selection of the control $v^{\circ}$, we note that it is no longer possible to adduce the heuristic considerations concerning the minimization of $\mu_{1}{ }^{\circ}$ which assisted us in selecting $u^{\circ}$. Let us simply take the control $v_{i}{ }^{\circ}$ without any explanation. This choice will be justified further on in our discussion.
2.8. Let us choose a small quantity $\varepsilon(\varphi)>0$ which vanishes as $\varphi \rightarrow \pi / 2$ and let $v^{*}=0$ to the right of the straight line $w_{1}=\eta_{1} /\left(1-\eta_{2}\right)=\varepsilon$ in the domains $D_{1}$ and $D_{2}$.
2.9. Let us choose $v^{*}>0$ on the straight line $w_{1}=\varepsilon$ in the domains $D_{1}$ and $D_{2}$ on the basis of the condition $w_{1}=0$ and in the form

$$
\begin{equation*}
v_{1}^{*}=\left(\varepsilon \eta_{1}-\eta_{2}\right) /\left(\gamma_{1}+\varepsilon \gamma_{2}\right) \tag{2.9}
\end{equation*}
$$

2.10. Let us assume that the control $v^{\circ}=-v \delta>0$ is impulsive and realizes the entire safety margin in the domains $D_{3}$ and $D_{4}$.
2.11. Let us set $v^{\circ}= \pm v_{1} \delta$ in any situation which brings the points $\left(\eta_{1} \pm a \gamma_{1}\right.$, $\eta_{2} \pm \alpha \gamma_{2}$ ) outside the semicircle.
3. Let us assume that at the initial instant the value

$$
w_{1}^{\circ}=\eta_{1}{ }^{\circ} /\left(1-\eta_{2}^{0}\right) \geqslant \varepsilon(\varphi)
$$

and the vector $\left(\eta_{1}{ }^{\circ}, \eta_{2}{ }^{\circ}, \alpha^{\circ}\right)$ lie in the domain $D_{1}$ or $D_{2}$. Then the realization of the controls $u^{*}, v^{\circ}$ chosen in accordance with Eqs. (2.1), ...,(2.8) and Subsects.2.7... $\ldots, 2.10$ ensures the realization of some motion which we shall call a "trajectory". In motion along a trajectory encounter is realized in a time $T_{\varepsilon}$ which generally consists of three components, $T_{\mathrm{e}}=T_{1}+T_{2}+T_{3}$. The time $T_{1}=2$ arc $\mathrm{tg}\left[\eta_{1} /(1-\right.$ $\left.\left.-\eta_{2}-\alpha\right)\right]-\pi / 2-\varphi$ corresponds to motion from the domain $D_{1}$ to the boundary of the domain $D_{2}$ along the circle $R^{\prime}=$ const. If the motion begins in the domain $D_{2}$, the time $T_{1}=0$. The time $T_{2}$ corresponds to the motion of the point in the domain $D_{2} ; w_{1} \geqslant \varepsilon$ from the state $\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \alpha^{\prime}\right)$ obtained by way of the realization $u^{\circ}=\mu_{1}{ }^{\circ} \delta$ according to Eqs. (2.1) with $u_{1}{ }^{0}$ taken in accordance with (2.2). Since the equation $\left(\eta_{1}+\alpha \gamma_{1}\right)^{2}+\left(\eta_{2}+\alpha \gamma_{2}\right)^{2}=1$ along this segment of the trajectory, we infer that the quantity $\alpha$ can be taken from it according to the formula

$$
\begin{equation*}
\alpha=-\eta_{1} \gamma_{1}-\eta_{2} \gamma_{2}+\sqrt{1-\left(\eta_{1} \gamma_{2}-\eta_{2} \gamma_{1}\right)} \tag{3.1}
\end{equation*}
$$

and we can integrate system (1.1) for $v^{\circ}=0$ until realization of the equation $\psi_{2}\left(t_{1}\right)=0$, i. e. of the boundary with the domains $D_{3}$ or $D_{4}$, provided that the inequality $w_{1}(t)>\varepsilon$ is satisfied throughout the time $0<t \leqslant t_{1}$. In this case $T_{2}=t_{1}-$ - $T_{1}$. On the other hand, if the equation $w\left(t_{2}\right)=\varepsilon$ is realized before the equation $\psi_{1}=0$, then from that time on the control $v^{\circ}$ is realized according to (2.9) and the point $\left(\eta_{1}, \eta_{2}\right)$ moves along the straight line $w_{1}=\varepsilon$ until it emerges onto the plane $\psi_{2}=0$ at the instant $t_{3}$. In this case $T_{2}=t_{3}-T_{1}$. The quantities $t_{1}-T_{1}$ and $t_{2}-T_{1}$ cannot be computed explicitly because of the nonlinearity of the defining equations. The time $t_{3}-t_{2}$ of motion along the straight line $w_{1}=\varepsilon$ can be obtained by integrating an equation with separated variables, its explicit form, however, is essentially immaterial.

According to (2.6), (2.8) and Rule 2.10, motion from the domains $D_{3}$ and $D_{4}$ following the realization of $u^{\circ}, v^{\circ}$ occurs along the arc $\left(a_{3} b_{1}\right)$ in the time $T_{3}=2 \operatorname{arctg} \mid\left(\eta_{1}+\right.$ $\left.\left.+\alpha \gamma_{1}\right) /\left(1-\eta_{2}-\alpha \gamma_{2}\right)\right]$.

Applying theorems on the differentiability of the solution with respect to the initial data, we can show that the function $T_{3}$ and its partial derivatives are continuous for all interior points of the domains $D_{1}, D_{2}, D_{3}, D_{4}$ lying to the right of the straight line $w_{1}=\varepsilon$. The partial derivatives are discontinuous at the points of the plane $\psi_{2}=0$ where the functions $T_{2}$ and $T_{3}$ are matched, but have limits continuous in the domains $D_{2}, D_{3}, D_{4}$ as we approach this plane from the domains $D_{2}, D_{3}, D_{4}$. Such limit points also exist at the remaining boundary points of the domains $D_{1}, \ldots, D_{4}$. From now on we shall not distinguish between the derivatives and their interior limits. In fact, the
function $T_{\varepsilon}$ is constant at points of the plane $\psi_{2}=U$. Any change in this function is accompanied by a shift out of the plane $\psi_{2}=0$, and the limits of the derivatives can be used to calculate the increment. A lengthy argument can be adduced to demonstrate the possibility of replacing derivatives by their limits.

We also recall that no essentially negative control $u<0$ is possible on the boundary $R+\alpha=1$ in the domain $D_{1}$, since such a control violates the inequality $R+\alpha \leqslant 1$ and encounter cannot occur by virtue of 2.1 and 2.7.

The same statement is valid for the boundary $r^{2}=1$ of the domain $D_{2}$ and for the boundaries $\rho^{2}=1$ of the domain $D_{3}$ and $\psi_{4}=0$ of the domain $D_{4}$.

Let us begin our investigation of the derivative $\left(T_{\varepsilon}\right)$ with the domains $D_{3}$ and $D_{4}$ where $T_{E} \cdots T_{3}$. We write the derivative as

$$
\begin{aligned}
& \quad\left(T_{\mathrm{E}}\right)^{\cdot}=\left(T_{3}\right)^{\cdot}=\left(1+w_{3}^{2}\right)^{-1}\left(1-\eta_{2}-\alpha \gamma_{2}\right)^{-2}\left[\eta_{2}\left(1-\eta_{2}-\alpha \gamma_{2}\right)-\right. \\
& - \\
& \left.-\eta_{1}\left(\eta_{1}+\alpha \gamma_{1}\right)+\left(u_{1}+\left|u_{1}\right|\right)\left(\eta_{1}+\alpha \gamma_{1}\right)+\left(v_{1}-\left|v_{1}\right|\right)\left(\eta_{1} \gamma_{2}-\eta_{2} \gamma_{1}+\gamma_{1}\right)\right]
\end{aligned}
$$

where

$$
w_{3}=\left(\eta_{1}+\alpha \gamma_{1}\right) /\left(1-\eta_{2}-\alpha \gamma_{2}\right)
$$

It is easy to show that $w_{3}$ is preserved for all $u<0, v>0$, whether impulsive or finite. The terms of the derivative $\left(T_{\varepsilon}\right)^{\cdot}$ which contain $v_{1}$ are negative for $v_{1}<0$; the terms containing $u_{4} \because 0$ are positive. Similarly, for $u=\mu_{2} \delta>0$ and $v=v_{2} \delta<0$ we infer that $\Delta T_{\varepsilon}\left(\mu_{2} \delta>0\right)>0, \Delta T_{\mathrm{z}}\left(v_{2} \delta<0\right)<0$. On first inspection the derivative $\left(T_{e}\right)^{\circ}$ appears to be independent of the controls for $u_{1}<0$ and $v_{1}>0$. However, this is not true for impulsive controls $u_{1}=\mu_{1} \delta<0$ and $v=v_{1} \delta>0$, since this case entails the variation of a component of the derivative $\left(T_{e}\right)^{*}$ which does not contain $u$ and $v$.

Denoting the ratios which are preserved for $u=\mu_{1} \delta<0$ by

$$
w_{1}=\eta_{1} /\left(1-\eta_{2}\right), \quad w_{2}=\alpha /\left(1-\eta_{2}\right)
$$

we can rewrite the derivative as

$$
\begin{gathered}
\left(T_{\varepsilon}\right)^{\cdot}=\left(1+w_{3}^{2}\right)^{-1}\left[\eta_{\Omega} /\left(1-\eta_{2}\right)\left(1-u_{2} \gamma_{2}\right)^{-1}-w_{1}\left(w_{1}+w_{2} \gamma_{1}\right) \times\right. \\
\left.\because\left(1-w_{2} \gamma_{2}\right)^{-2}\right]
\end{gathered}
$$

This derivative attains a minimum with respect to $\mu_{1}<0$ for the same value as that which minimizes the quantity $\eta_{2}$. It is clearly equal to the $\mu_{1}{ }^{\bullet}$ given by (2.5), since according to (1.5) the quantity $\eta_{2}{ }^{\prime}$ is minimal for the maximum $\lambda$. Now let us express $\left(T_{\mathrm{g}}\right)^{*}$ in terms of $\alpha$ and the quantities $s_{1}=\eta_{1}+\alpha \gamma_{1}, s_{2}=1-\eta_{2}-\alpha \gamma_{2}$ which are preserved for $v=\nu_{1} \delta>0$,

$$
\left(T_{3}\right)=\left(1-w_{3}^{2}\right)^{-1}\left[s_{2}-s_{1}^{2}-s_{2}^{2}+\alpha\left(s_{1} \gamma_{1}-s_{2} \gamma_{2}\right)\right] s_{2}^{-2}
$$

The expression $s_{1} \gamma_{1}-s_{2} \gamma_{2}=\psi_{1} \leq 0$ in the domains $D_{3}, D_{4}$, so that $\left(T_{3}\right)^{\cdot}$ attains its maximum at $\alpha=0$, i. e. for $v_{1}=v \geqslant 0$. We conclude from this that the relations

$$
\min _{\mu_{1}<0} \max _{v_{1} 00}\left(T_{3}\right)^{\cdot} \quad \max _{v_{1}>0} \min _{\mu_{1}<0}\left(T_{3}\right)^{\cdot}=-1=\left(T_{3}\right)^{\circ}\left(\mu_{1}{ }^{\circ}, v_{1}{ }^{c}\right)
$$

are valid.
We can now draw the final conclusion that the inequalities

$$
\begin{equation*}
T\left(u^{\circ}, v\right) \leqslant T_{\varepsilon}\left(u^{\circ}, v^{\circ}\right) \leqslant T\left(u, v^{\circ}\right) \tag{3.2}
\end{equation*}
$$

are valid in the domains $D_{3}$ and $D_{4}$, i. e. that $u^{\circ}, v^{\circ}$ realize the saddle point of the game.

In the domain $D_{2}$ the function $T_{\mathrm{e}}=T_{2}+2 \varphi$; in the domain $D_{1}$ the function $T_{\mathrm{E}}=T_{2}+T_{1}+2 \varphi$. Noting that $T_{\mathrm{e}}\left(w_{1}, w_{2}\right)$ depends solely on the ratios $w_{1}$ and $w_{2}$ and denoting the partial derivatives with respect to these variables by $T^{1}$ and $T^{2}$, we can write ( $T_{e}$ ) as

$$
\begin{gather*}
\left(T_{\varepsilon}\right)=T^{1} \eta_{2} /\left(1-\eta_{2}\right)-T^{1} w_{1}{ }^{2}-T^{2} w_{1} w_{2}+P_{1}(u)+P_{2}(v) \\
P_{1}(u)=\left(1-\eta_{2}\right)^{-2}\left(u_{1}+\left|u_{2}\right|\right)\left(T^{1} \eta_{1}+T^{2} \alpha\right)  \tag{3.3}\\
P_{2}(v)=\left(1-\eta_{2}\right)^{-2}\left[v_{1} T^{1}\left(\eta_{1} \gamma_{2}-\eta_{2} \gamma_{1}+\gamma_{1}\right)+T^{2}\left(\alpha v_{1} \gamma_{2}-\right.\right. \\
\left.\left.-\left|v_{1}\right|\left(1-\eta_{2}\right)\right)\right]
\end{gather*}
$$

Let us assume that $T^{1}>0$. This assumption is valid for small $\alpha$ by virtue of continuity since $\alpha=0 T_{z}=2 \operatorname{arctg}\left[\eta_{2} /\left(1-\eta_{2}\right)\right.$ for $\alpha=0$, and since the derivative $T^{T}=1-\eta_{2}>0$ is positive.

If $T^{1}>0$, the value $\left(T_{\varepsilon}\right)^{*}$ attains its minimum for $\mu_{1}<0$ for the minimal $\eta_{2}$. The minimal $\eta_{2}$ is realized for $u^{\circ}=\mu_{1}{ }^{\circ} \delta$ chosen in accordance with (2.3).

We can express this fact in the form

$$
\left.T_{\varepsilon}\left(\mu_{1}{ }^{\circ}\right)\right)^{\cdot}=\min _{\mu_{1}<0}\left(T_{\varepsilon}\right)^{\circ}
$$

Let us introduce the new variables $l_{1}$ and $l_{2}$ according to the formulas

$$
l_{1}=\eta_{1} \gamma_{1}+\eta_{2} \gamma_{2}, \quad l_{2}=-\eta_{1} \gamma_{2}+\eta_{2} \gamma_{1}
$$

and prove the validity of an ancillary assumption.
3.1. If the initial point $w_{1}{ }^{\bullet}>\varepsilon, w_{2}{ }^{\circ}$ lies either in the domain $D_{2}$ or in the part of the domain $D_{1}$ defined by the inequality

$$
\begin{gather*}
-\lambda_{1}^{\circ}\left(1-\eta_{2}\right)+\sqrt{\lambda_{1}^{\circ}{ }^{\circ} \eta_{1}^{2}+\left[1-\lambda_{1}^{\circ}\left(1-\eta_{2}\right)\right]^{2}}- \\
-\lambda_{1}^{\circ} \eta_{1} \gamma_{1}-\left[1 \cdots \lambda_{1}^{\circ}\left(1-\eta_{2}\right)\right] \tau_{2}<0 \tag{3.4}
\end{gather*}
$$

then the variation $\delta T$ of the time associated with variations of the variables restricted by the conditions $\delta l_{2}=0, \delta \alpha=-\delta l_{1}>0$ is positive.
proof. If the point lies in the domain $D_{2}$, the indicated variations leave it in this domain and the impulse $\mu_{1}{ }^{\circ}$ remains constant (since it depends only on $l_{2}$ and $l_{1}+\alpha$, and since the latter quantities are preserved). In addition, we can show by direct computation that the variations $\delta l_{2}{ }^{\prime}, \delta l_{1}^{\prime}, \delta \alpha$ obtained after the impulse $\mu_{1}{ }^{\circ}$ also satisfy the conditions $\delta l_{2}{ }^{\prime}=0,-\delta \alpha^{\prime}=\delta l_{1}^{\prime}<0$. From now on we shall omit the primes and define the variations of quantities as their total variations and not their linear approximations. Computing the variation $\delta u_{1}{ }^{\circ}$ by formula (2.4) for $v^{\circ}=0$, we obtain

$$
\begin{equation*}
\delta u_{1}^{\circ}=l_{2}^{\prime} \delta \alpha /\left(1-\eta_{2}^{\prime}-\alpha^{\prime} \gamma_{2}\right) \leqslant 0 \tag{3.5}
\end{equation*}
$$

since $l_{2}{ }^{\prime} \leqslant 0$ in the domain $D_{2}$. Omitting the primes accompanying the variables, we obtain the variation $\delta l_{2}{ }^{\circ}$,

$$
\begin{gather*}
\delta l_{2}^{\circ}=-\delta l_{1}+l_{2} \delta\left|u_{1}^{\circ}\right|+\gamma_{1} \delta u_{1}^{\circ}=\delta \alpha\left(l_{1}+\alpha\right)\left(l_{1}+\alpha-\gamma_{2}\right) \times  \tag{3.6}\\
\times\left(1-\eta_{2}-\alpha \gamma_{2}\right)^{-1}>0
\end{gather*}
$$

Inequality (3.6) is valid by virtue of the fact that all of the factors are positive in the domain $D_{2}$ for $\delta \alpha>0$. The variation of the expression
$\delta\left(d \alpha \quad 0 \quad / d l_{2}\right)=\delta\left[\alpha\left|u_{1}{ }^{\circ}\right| /\left(-l_{1}+l_{2}\left|u_{1}{ }^{\circ}\right|+u_{1}{ }^{\circ} \gamma_{1}\right)\right]<0$
satisfies inequality (3.7) by virtue of the fact that the positive numerator and negative
denominator increase in accordance with (3.5) and (3.6). This means that the function $\alpha\left(l_{2}, l_{20}, \alpha_{0}\right)$ increases monotonically in $\alpha_{0}$ along a trajectory for any $l_{2}, l_{20}$ until the equation $w_{1}=\varepsilon$ is realized. Hence, if the equation $w_{1}=\varepsilon$ is not realized on the initial trajectory, the inequality (3.6) is valid at all its points, so that the straight line $l_{2}=-\cos \varphi$ (i.e. the straight line $\left.\left(b_{1} a_{3}\right)\right)$, which is the boundary of the domain $D_{3}$ or $D_{4}{ }^{\dagger}$ is attained earlier on the initial trajectory than on the varied trajectory. On the other hand, if the value $w_{1}=\varepsilon$ is attained at the point $l_{2}$ on the initial trajectory, then this value $l_{2}{ }^{\circ}$ is attained earlier than on the varied trajectory, and the representing point of the initial trajectory from then on moves along the straight line $w_{1}=\varepsilon$, reaching the boundary of the domain $D_{3}$ or $D_{4}$ earlier than does the point of the initial trajectory. Thus, $\delta T_{2}>0$ in the domain $D_{2}$. If the variables lie in the domain $D_{1}$, we can show that the variation $\delta T_{1}$ is positive by direct computation. The variation $\delta \alpha^{\prime}=\delta \alpha \lambda_{1}{ }^{\circ}+$ $+\alpha \delta \lambda_{1}{ }^{\circ}+\delta \alpha \delta \lambda_{1}^{\circ}$ also turns out to be positive under condition (3.4). Since the quantity $\alpha^{\prime}$ is preserved on the trajectory, the following conditions are realized at the instant $T_{1}+\delta T_{1}$ at the boundary of the domain $D_{2}$ :

$$
\delta l_{2}\left(T_{1}+\delta T_{1}\right)=0, \quad \delta \alpha\left(T_{1}+\delta T_{1}\right)=-\delta l_{1}\left(T_{1}+\delta T_{1}\right)>0
$$

Hence, by what we have just proved, $\delta T_{1}>0$ and the variation $\delta T_{\varepsilon}=\delta T_{1}+$ $\dot{\tau} \delta T_{2}>0$ is positive. Completing our proof, we note that inequality (3.4) assumes the form $\eta_{2}^{\prime}-1+\sqrt{\eta_{1}^{\prime 2}+\eta_{2}^{\prime 2}}-l_{1}^{\prime}<0$ after the realization of $u=\mu_{1}{ }^{\circ} \delta$ taken in accordance with (2.2). Since the quantity $\boldsymbol{\eta}_{1}{ }^{2}+\eta_{2}{ }^{\prime 2}$ is preserved along the trajectory and since the quantities $\eta_{2}{ }^{\prime}$ and $-l_{1}$ diminish, inequality (3.4) is not violated along the trajectory. The proof is now complete.

Writing out the variation $\delta T_{\varepsilon}$, we obtain (in accordance with 3.1) the inequality

$$
\begin{align*}
\delta T_{\mathrm{e}}= & -\delta \alpha\left(1-\eta_{2}\right)^{-2}\left[T^{1}\left(\eta_{1} \gamma_{2}-\eta_{2} \gamma_{1}+\gamma_{1}\right)+\right. \\
& \left.+T^{2}\left(\eta_{2}+\alpha \gamma_{2}-1\right)\right]+O(\delta \alpha)>0 \tag{3.8}
\end{align*}
$$

3.2. The following three estimates are valid:

$$
\begin{gather*}
P_{2}(v) \leqslant 0  \tag{3.9}\\
T_{2}>0  \tag{3.10}\\
P_{1}(u>0)>0 \tag{3.11}
\end{gather*}
$$

Proof. Estimate (3.9) follows from (3.8); estimate (3.10) follows from (3.9), the fact that $T^{1}>0$, and the estimates

$$
\eta_{1} \gamma_{1}+\gamma_{2}\left(1-\eta_{2}\right)>0, \quad 1-\eta_{2}-\alpha \gamma_{1}>0
$$

which are valid in the domain $D_{1}$. Estimate (3.11) follows from (3.8), $T^{1}>0$, and (3.10). If $v<0$, the estimate (3.9) becomes a strict inequality, $P_{2}(v<0)<0$. This follows from (3.8), $T_{1}>0$ ' and (3.10).
3.3. Let us denote the quantity $T^{\circ}=\lim T_{\varepsilon}$ as $\varepsilon \rightarrow 0$ by $T^{\circ}$. This function satisfies estimates (3.2), .., (3.11). We need not prove this intuitively obvious statement.

Let us introduce the domain $D_{5}\left[\partial T^{\circ} / d w_{1}=T^{\circ 1}>0\right]$ formed out of the domain $D_{5}{ }^{\circ}\left[T^{\circ 1}(\alpha=0) \geqslant 0\right]$ by continuous variation of $\alpha$, the domain $\left.D_{4} \mid w_{1} \geqslant \varepsilon\right]$, and the domain $D_{6}=D_{4} \cup D_{5}$. We can now formulate the following theorem.

Theorem. If $z \in D_{6}$, the estimates

$$
\begin{equation*}
T_{\varepsilon}\left(u^{\circ}, v^{\circ}\right) \leqslant T\left(u, v^{\circ}\right) \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
T\left(u^{\circ}, v\right)<T^{\circ} \quad(3.13) ; T_{\varepsilon}\left(u^{\circ}, v^{\circ}\right) \geqslant T_{\varepsilon}\left(u^{\circ}, v^{*}\right) \tag{3.13}
\end{equation*}
$$

are valid. Here $v^{*}$ is a control which together with $u^{\circ}$ leaves the point in the domain $D_{1}$.
Proof. All of the statements of the theorem follow directly from previous statements $3.1,3.2,3.3$ and from the results of integrating the corresponding minimax and maximin differential inequalities which we shall not write out here. Differential inequalities and the mean-value theorem can be applied to $\delta$-function type controls $v=v_{2} \delta$ or $u=\mu_{2} \delta$. This yields the inequalities $\Delta T\left(v_{2} / \mu_{1}{ }^{\circ}\right)<0$ and $\Delta T\left(v_{2}{ }^{\circ}, \mu_{2}\right)>0$. The proof is complete.

The need to verify the inequality $T^{\circ 1}>0$ leaves something to be desired, as it cannot be verified directly; all we can do is refer to coarse sufficient condition (3.4) which guarantees the estimate $T^{\circ 1}>0$.

The results of calculations by computer for $\varphi=0$ appear in Fig. 2. The quantity $T^{\circ 1}$ at the surface $R+\alpha=1$ vanishes for the first time


Fig. 2 at the curve $\left(a_{1}, 0\right)$. Moreover, the lines ( $c_{1}, d_{1}$ ), ( $c_{2}, d_{2}$ ) indicate that the control $v^{\sigma}$ is optimal, and


Fig. 3
that $T^{-1}>0$ even in the domain where inequality (3.4) is violated.
Until now we assumed that the angle $\varphi$ was acute. If it is obtuse or a right angle, the domain $D_{3}$ vanishes and the right end $g_{1}$ of the arrow ( $g_{1}, g, g_{2}$ ) becomes the left end. It is therefore sufficient to replace $\sin \varphi, \cos \varphi$ by $-\sin \varphi,-\cos \varphi$ in all the formulas; no other changes are required. Our analysis of the problem is now complete.
4. We shall cite the results of our analysis of the second example without detailed proofs. The equations of motion in this case are

$$
\eta_{1}^{*}=\eta_{2}+\eta_{1}\left|u_{1}\right|+v_{1} \gamma_{1}, \quad \eta_{2}^{*}=\eta_{2}\left|u_{1}\right|+u_{1}+v_{1} \gamma_{2}
$$

The restrictions imposed on the controls are the same as in Sect. 1 . Once again, we confine our attention to the domain $\eta_{1} \geqslant 0$. Figure 3 shows several possible vectors $\left(g_{1}, g, g_{2}\right),\left(c_{1}, c, c_{2}\right)$, etc.

It is clear that if one of the arrow ends $g_{1}$ or $g_{2}$ either lies on the open half-line ( $a_{1}, a_{2}$ ] or intersects the open half-line ( $b_{1}, b_{2}$ ), the impulse $v= \pm v \delta$ directed in the appropriate way will take the point outside the attainability domain of zero [3], and pursuit cannot be completed. The vector $\left(f_{1}, f, f_{2}\right)$, for which the impulse $v^{\circ}=-v \delta$ directed towards the point $f_{2}$ intersects the segment $\eta_{1}=0,\left|\eta_{2}\right| \leqslant 1$ and leads to
encounter according to the definition of Subsect. 1.1, remains doubtful. Nevertheless, we can show that in this case one of the ends $f_{1}$ or $f_{2}$ will reach the straight half-lines ( $a_{1}, a_{2}$ ]; ( $b_{1}, b_{2}$ ] before encounter for any control " $u$ " and $v=0$. This enables us to make the tollowing statement.
4.1. If we set $v^{6}$ equal to zero as long as the closed segments with the origin $\eta_{1}, \eta_{2}$ and the components $\pm \alpha \gamma_{1}, \pm \alpha \gamma_{2}$ do not intersect the straight half-line $\left(b_{1}, b_{2}\right]$ and have no points in common with the half-line $\left(a_{1}, a_{2}\right]$, and set $v= \pm v \delta$ when one of these conditions is violated, then pursuit for an acute angle $\varphi$ cannot be completed if these conditions are violated at the initial instant. Pursuit cannot be completed for an obtuse angle $\varphi$ either if these conditions are violated at the initial instant or if at the initial instant $l_{2}+\alpha \gamma_{2} \geqslant 1$.

Let us cite the formulas for the optimal controls and optimal time without a detailed argument. We assume that all of the inequalities violating the conditions adopted in 4.1 are fulfilled without actually writing them out.
4.2. The angle $\varphi$ is acute. The control $u^{\bullet}=\mu_{1}^{\circ} \delta$ in the domain $D_{1}\left[\psi_{1}=\eta_{1}-\right.$ $-\alpha \gamma_{2} \geqslant 0$ ] is of the form

$$
\begin{equation*}
\lambda_{1}^{\circ}=2 /\left(1-\eta_{2}+\alpha \sin \varphi\right), \quad \lambda_{1}^{\bullet}=\mu /\left(\mu-\left|\mu_{1}^{\bullet}\right|\right) \tag{4.1}
\end{equation*}
$$

If $\lambda_{1}{ }^{*}=1$, the $u_{1}{ }^{*}$ taken from the condition $\left(\lambda_{1}{ }^{*}\right)=0$ is of the form

$$
\begin{equation*}
u_{1}=-(1 / 2)\left(v_{1}+\left|v_{1}\right|\right) \gamma_{2} \tag{4.2}
\end{equation*}
$$

In the domain $D_{2}\left(\psi_{1}<0\right)$ we have

$$
\lambda_{2}^{\circ}=2 /\left(1-\eta_{2}+\eta_{1} \operatorname{tg} \varphi\right), \quad u_{1}^{\circ}=\eta_{2} \operatorname{tg} \varphi /\left(1-\eta_{2}\right)
$$

The control $v^{\circ}=v \delta$ everywhere.
The above controls correspond to the saddle point of the game, and the optimal time is given by $\quad T^{\circ}\left(u^{\circ}, v^{\circ}\right)=2\left(\eta_{1}+\alpha \cos \varphi\right) /\left(1-\eta_{2}-\alpha \sin \varphi\right)$
4.3. The angle $\varphi$ is obtuse. The control $u^{0}$ is given by formulas (4.1) and (4.2). The control $v^{\circ}=0$ for $w_{1}>\varepsilon$, and must be found from the condition $w_{1}{ }^{\circ}=0$ in the form $v^{\circ}=\eta_{2} /\left(\gamma_{1}-\varepsilon \gamma_{2}\right)$ for $w_{1}=\varepsilon$. We have a theorem analogous to that of Sect. 3 , and the limiting value $T^{\circ}=\lim T_{\mathrm{e}}$ as $\varepsilon \rightarrow 0$ is given by the formula

$$
T^{\circ}=\eta_{1} /\left(1-\eta_{2} \gamma_{1}\right)+\operatorname{ctg} \varphi \ln \left[\left(1-\eta_{2}-\alpha \gamma_{2}\right) /\left(1-\eta_{2}+\alpha \gamma_{2}\right)\right.
$$

Since the derivative $T^{01}$ is positive and since the restrictions on initial values of the type ( 3.4 ) are not essential in this case, the theorem analogous to the theorem of Sect. 3 can be formulated without reference to any not readily verifiable conditions under which the point belongs to a domain analogous to the domain $D_{6}$.

## BIBLIOGRAPHY

1. Krasovskii, N. N., On the problem of pursuit in the case of linear monotype objects. PMM Vol. 30, N22, 1966.
2. Pozharitskii, G. K., Impulsive tracking in the case of second-order monotype linear ohjects. PMM Vol. 30, N.5, 1966.
3. Markhashov, L. M., Plotnikova, G. V. and Pozharitskii, G.K., Impulse actuated time-optimal operations in second-order linear systems. PMM Vol. 30, Na4, 1966.
