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Two problems on the minimax of the time until encounter of the objects are considered. 

The control vectors of the pursuer and pursued object are assumed to be of fixed direc- 
tion and nonparallel. Each of the vectors is subject to an “impulsive” restriction. The 

paper is related to n, 21 in subject matter. The results of computations carried out by 

Iu. A. Kraiushkin are cited. 

1. Let the relative motion of the pursuer P (yl, yz) and pursued object E (zlr 22) 
in the variables z1 = r~, - zl, 5 = ZJ, - z2 be described by the equations 

x1 = xs + v COJ cp = 52 + vvl 
$‘z = - x1 +vsincp +U = -51 +vY2 +U (1.1) 

and let the controls u and v. be subject to the restrictions 

(1.2) 

v(7) = N- {,v,dz>O, N =const>O 
0 

The control v (t) is formed in accordance with the phase vector (xl, x2, p, Y) of 

the system ; moreover, the pursuer also knows the control v (z), i.e. the objects are dis- 

criminated, ?J (T) = v [Xl (.G), x2 (4, p ('c), Y (z)I 

u (t) = 24 Ix, (t), . . . . Y (T), v @)I 
Restrictions (1.2) admit of controls in the form of impulsive, 6 -functions U = p16, 

V = ~16, so that we shall assume that the variables in this case vary according to the 

formulas 
X1 (.t) = Xl (‘G - 0) + YlYl, 52 (4 = 9 (z -0) +y1y2 + Cl1 

p (4 = p (T -0) - I Pl I7 Y (T) = Y (z -0) - I Yl I (1.3) 

We define a “permissible trajectory” X, (z), x2 (z), p (T), Y (z) as a trajectory with 
a finite number of jumps which is everywhere continuous on the right and satisfies Eqs. 
(1.1) together with the Eqs. pL’ = - 1 u 1, v’= - 1 V I almost everywhere. A pair 
of equations realizing a permissible trajectory will be called “mutually permissible”. 
It is to this class that we confine our solution of the problem. We shall call the set of 

quantities x1, x2, p, v the “phase vector” and denote it by Z. The possibility of jumps 

requires refinement of the notion of “encounter”. 

Definition 1.1. l,et (zl, x2, p., v) be the initial point or the left-hand limits 
of the trajectory as t - T - 0 , and let ZJ = v1 (zl, . . . . v )s be the impulsive con- 

trol of the pursued object. If there exist an impulsive control U = p18 and a number 
0 < h c< 1 which satisfy the equations 

Xl -I-hy1 = 0, $2 +hY2 + p1 = 0 
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then the set (x,, ~2, p, v, v~) which includes the impulse vr in addition to the phase 

vector will be called the “encounter” and the quantity T the “instant of encounter”, 

We note that an encounter is realized if and only if a cfosed segment with the origin 

(x1, ~2) and the components (vI’~‘~, v1y2) has at least one point in common with the 

closed segment x2 = 0, 1 x1 [ Q p. 
We introduce the following new variables: 

91 = 51 I f-1, rlz = 22 i p.I, a=v/p 

UI = u I p, v,=v/p 

For finite u and v expressions (1.1). (1.2) give us the equations 

‘1; = 732 + q1 I UI 1 -I- SYll rlz' = -71 + q2 I a1 1 + a1 + syz 

Y,'= -fsI+~I~,l (1.4) 
Equations (1.3) become 

rlr’ (4 = h [% fRYi/ PI, 9; (4 = T 1 3: h (1 * ZtlY2 f p) (1.5) 
cz’ (tf = h fa - I Yl I I pl, k = P / (p - I p1 i) 

Here the upper combination corresponds to pr > 0 and the lower to pl (0; the 
quantities th, Q, a are the left-hand limits or initial point. 

We propose to solve the problem of finding a pair of stra- 

tegies u”, v” which yield the saddle point of the cost 

T (u, cj of the game, As will be shown below, saddle stra- 

tegies do not always exist. In certain cases it is possible only 
to specify a strategy U’ and a sequence of strategies v” (8) 
for which 

minsup_Y’ ‘-‘sup rnin T = lim sup min T = To 
U 2, i’ 1‘ E+o L’s 11 

where the limit function lim v, results in encounter at 

T, < To as e + 0 . If there exists a v* such that encoun- 

ter does not occur for any u for v = v”, this v” is also “op- 
timal”. 

2, Let us direct the axis Q downwards and consider the 

57 unit semicircle (a,, a2, 6,) in the plane qltla. Next, let 

Fig. 1 
us represent the several phase vectors (tit, 112, a) by means 

of the point triplets (& 6, gr), (cs, c, ct), , h, e, elf 
(see Fig, 1). Each of the triplets, e.g. (gs, g, g,) corresponds to a point g (rt, Q) and 
an arrow (gs, gr) of length 2% parallel to the radius (0, as) forming the angle cp with 
the axis Q. 

Formulas (1.5) indicate that the impulsive control u = ~~6 < 0 transforms the 
vector (gs, g, g,) into the vector (gs’, g’, gt’) by way of a similarity transformation 

along the straight lines (a,, gl), (a,, gz). By virtue of the linearity of the problem, the 

optimal control changes sign with a change in the signs of -Q, q2, while the optimal 
time remains unchanged. We shall therefore confine our attention to the domain th> 0 
and stipulate that 91 is acute, 

The same problem for cp =I n / 2 is solved in r2] ; the control U* = - ~~‘6. The 
control in this problem is impulsive and must be chosen on the basis of the equation 

R’ L Jfqlt2 + qgs2 = 1 ---a 
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where Q’, Q.‘, CC’ are replaced by the right sides of (1.5). On the other hand, if the 
latter equation is fulfilled for pz” = 0, the u* (v) < 0 must be chosen from the con- 
dition R,’ +a’ = 0. 

The control U” can be assumed to equal zero or to any positive value as long as the 
arrow ends gs and g, remain inside the unit semicircle. On the other hand, if one of 
them, let us say &, lies outside the semicircle, the control u” = - ~6 ( 0 takes the 

point out of the semicurcle and encounter cannot occur at any subsequent time. LJpon 

realization of an optimal control u” this does not occur and encounter takes place after 

the optimal time T” = 2 are tg [~/(l - Q - cr.)]. On the other hand, if the 

chosen impulse pr is smaller than pIm, the point g, leaves the semicircle prior to en- 

counter, and encounter does not ensue. 

Let us begin our analysis of the general case and choose the smallest possible impul- 

sive control u” = pro8 < 0 for which none of the points g,, g2, c,, c2. . . can leave 
the semicircle for a subsequent realization of u = u = 0. Let the point g, lie to the 

right of the straight line (aiaa) and let R + a = yfq12 + qz2 + a > 1, i.e. let 

the phase vector lie in the domain D,‘defined by the inequalities 

D,’ [gr =(Q +ay,)cos8 -sih0(1 --qz-aay2)>0, 8= (p/2+n/4, 
R+a>11 

2.1. If the phase vector lies in the domain L)i” and the control v’ = 0 as long as 

the point gr is inside the semicircle, and if v” = ~6 > 0 when it leaves the semicir- 
cle, the encounter cannot occur for any control u. 

Proof, The derivative (B + a)’ satisfies the following estimate in the domain Dlo: 

jR + a)' = (R + a)lu,\ + @h/R) %> (R -t a - 1) pll> 0 

This means that R -j- a does not decrease and that the point g, will lie outside the 

semicircle at the instant of emergence of the point g onto the radius (0, az). At this 

instant or somewhat earlier it is possible to realize v = ~8 > 0 so that the point g will 

lie outside the semicircle which is the attainability domain of zero [3] until emerging 
onto the radius (0, a,).The proof is now complete. 

2.2. Following 2.1, let us choose a control u’ = pzo& ( 0 on the basis of the con- 

dition R' + CC' = 'i on the surface R -+- a = 1 in the domain D, [qr >. 0, R -j- 
+ a < 11 bounding the domain Dl* . We choose this control in the form 

h,” = 2 (1 - TJ2 -a) / hQ + (1 - q# - d-1 (2.1) 

aI'= p/ (p -I PLlg I) 

If an impulsive control r = v,6 has been realized for the vector (rh, rI2, CC) in the 
domain fj, and if the point 

(311 -i- (v, : p)v1, 112 -;- (VI / p)l’z, a -- I Vl I / CL) 

has remained in the domain D1, these values must be substituted in place of tI1, r12, CL 

in formula (2.1). This note is also valid for all the subsequent expressions for h20, hs*, 

h,’ , If K -I- a - 1, the final control u,’ obtained from the condition (n + a). =0 
is realized in accordance with the condition 

UI O = (1 - %]a)-’ Iz.1 (l-hl’r ; ‘j& - 1 1‘1 j RI (2.2) 

2.3. Let us choose the control u0 = l.~r“6 on the basis of the condition (th’ + 

-\- c~‘y~)” -j. (rlz’ + a’~,)” q =: 1 of arrival of the point on the arc (Us for the vector 
(cz. c, c,) corresponding to the position of the point cr (rh -I- ~xy,, !I2 f- CC’,)~) between 
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the straight lines (aXus) and (ora,) in the domain 

I, 

L 

Tl -c: 0, $2 == (111 4~ a711 71 - ^/2 (1 - q2 - w,) > 0 

2 7.2 :-: (ql + qr)2 -i_ (92 * q2)2 cc ,t 
I 

The quantity hs’ is of the form 

A,” = 2 (1 - 92 - ay,) i r(Q -t_ ay,)’ + (1 -Q - c&yJ’l (2.3) 

If Aa6 = 1, the final control ur” < 0 determined from the condition (A<)* = 0 
is realized in the form 

0 ?.Ll = - (1 - 32 - “Y&-l &%Yz -%Y& +t%Yl - rt2Yz -a) 
X (11111 -- u,)l (2.4) 

It is geometrically self-evident that the points e,’ , q,’ cannot leave the semicircle 

during the realization of ulD as long as the point e (Q, Q, a) lies in the domain Dt. 

2.4. Passage to the vector (es’,e’, er’) in the domain D,’ [$,c< 0, & = ql - 
- ay, > 0] can be hazardous for the vector (e,, e, e,) co~es~nding to the point 

el situated no further to the left than the straight line (alas) and to the point e2 situ- 
ated to the right of the straight line Q = 0. The hazard consists in the possibility, that 

the point es’ will reach the semicircle in the neighborho~ of the point b,. 
2.5. If we set v” =- 0 in the domain 

0; [$a.< 0, *,>o, pa = ?bs -!-Tla2 --CC2 +2ay,> 11 

as long as the point ea’ lies inside the semicircle and if us = -v16 once it emerges 

beyond the semicircle, the encounter is impossible for any control U. The proof is simi- 
lar to that of S ubsect. 2.1. 

2.6, Let us choose the quantity hs” in the domain D, [ga CC. 0, 9s > 0, p z -< I] 
on the basis of the equation p’” = Q’~ + ~‘s - a’:: + 2ro~‘Ys --_ 1 in the form 

ha” =. 2 (1 -212 -cxY,) / 17," +(l - qJi - a31 (2.5) 
For h,” = 1 the final control u,’ can be determined from the condition (As’)’ = 0 

in the form tllo = -+ [(%Y1 + %Yzh + (a -y2) I Cl/ I i (1 - qz --ayz), 

(2.6) 
2.7. Let us find a jump l&e < 0 for the vector (ds, d, d,) with the point ds lying 

to the left of the axis ?b = cl and the point d, lying to the left of the straight line 

(‘I, ‘sjinthe domain D, [& ,< 0, q3 ,< 0, q4 =: 91yz - (1 + %)Y1 < 01 
We choose this jump from the condition of arrival of the point il’ at the straight line 
(b,~,) in the form 

Ad0 = 2 (1 - % - % tg cp) 1 w + (1 - qJ2 - 912YZ (2.7) 

For ?L.,O = 1 we find the control yc from the condition (A*“)* = 0 in the form 

Ul e = (rlz t&r ‘p + rll) / (1 - 112 4- rll tg ‘PI (2.8) 

3eg~n~g our selection of the control v“, we note that it is no longer possible to 
adduce the heuristic considerations concerning the minimization of plo which assisted 

us in selecting u’. Let us simply take the control urO without any explanation. This 

choice will be justified further on in our discussion. 
2. 8. Let us choose a small quantity E (cp) ) 0 which vanishes as CP - n / 2 and 

let v* = 0 to the right of the straight line w1 = Q / (1 - q2) = 8 in the domains 

D, and L)z . 
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2.9. Let us choose u* > 0 on the straight line wt = e in the domains D1 and&, on 

the basis of the condition WZ*= 0 and in the form 

v,* = (ertt - %!) / (r1 f 8%) (2.9) 

2.10. Let us assume that the control v” == -~8 > 0 is impulsive and realizes the 
entire safety margin in the domains Da and D,. 

2.11. Let us set v’ = &ys& in any situation which brings the points (ql & dyi, 

qa & ay,) outside the semicircle, 

3, Let us assume that at the initial instant the value 

r&O = T$ / (1 - rlz”) > e (4 

and the vector (qr*, qa’, a’) lie in the domain & or Da. Then the realization of 

the controls u*, ~3’ chosen in accordance with Eqs. (2.1)* . , . ,(2.8) and Subsects. 2.7,. . 
. . . ,2.10 ensures the realization of some motion which we shaii call a “trajectory”, 

In motion along a trajectory encounter is realized in a time T, which generally consists 

of three components. T e = T, + Tz + T,. The time T, = 2 arc tg IQ / (1 - 
- vi? -a)1 --n/2 - (p corresponds to motion from the domain D1 to the boundary 
of the domain D2 along the circle a = eon&.. If the motion begins in the domain 

Dar the time T, = 0, The time Ta corresponds to the motion of the point in the 
domain L)a; WI >& from the state (,Q’, qa’, a’) obtained by way of the realization 

u” = l..~r*6 according to Eqs, (2.1) with u,* taken in accordance with (2.2). Since the 
equation (rlr + CZY~)~ f (~a + CC&’ = 1 along this segment of the trajectory, we 

infer that the quantity a can be taken from it according to the formula 

a = - rltyr - rl$rz + 7/I - (91Yz - rl271) (3.1) 

and we can integrate system (1. I) for u* = 0 until realization of the equation 

4% 01) = 0 ,i. e. of the boundary with the domains Da or I),, provided that the inequa- 

lity w1 (t) > E is satisfied throughout the time 0 < t < &. In this case Tt = tl - 
- T, .On the other hand, if the equation w (Es) = E is realized before the equation 

$1 =-i 0, then from that time on the control V” is realized according to (2.9) and the 

point (31, rta) moves along the straight line W, = e until it emerges onto the plane 

qtz = 0 at the instant t3 _ In this case Tz = t, - Tz- The quantities t1 - Tr and 

t2 - T, cannot be computed explicitly because of the nonlinearity of the defining equa- 
tions. The time ta - ts of motion along the straight line wr = E can be obtained by 
integrating an equation with separated variables, its explicit form, however, is essentially 

immaterial. 

According to (-2.6),(2.8) and Rule 2.10, motion from the domains f), and I), foflow- 
ing the realization of u”, V” occurs along the arc (ash,) in the time T, = 2 arc tg [(q 1+ 

+ cxi;l) I (1 - rla - w72H. 
Applying theorems on the differentiability of the solution with respect to the initial 

data, we can show that the function T, and its partial derivatives are continuous for all 
interior points of the domains D,, L)a, Da, L), lying to the right of the straight line 

Wi = e . The partial derivatives are discontinuo~ at the points of the plane lJtz = 0 
where the functions Tz and ?“a are matched, but have limits continuous in the domains 
1)a, Da, Da as we approach this plane from the domains aa, us, DJ. Such limit points 

also exist at the remaining boundary points of the domains Dr, ,,,, D, , From now on 
we shall not distinguish between the derivatives and their interior limits. In fact, the 
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function TE is constant at points of the plane I#~ -= U . Any change in this function is 
accompanied by a shift out of the plane +a = 0, and the limits of the derivatives can 

be used to calculate the increment. il lengthy argument can be adduced to demonstrate 

the possibility of replacing derivatives by their limits. 
We also recall that no essentially negative control u < 0 is possible on the boundary 

x + CC = 1 in the domain fir , since such a control violates the inequalityR+a < 1 

and encounter cannot occur by virtue of 2.1 and 2.7. 
The same statement is valid for the boundary 1.‘: -== 1 of the domain LIZ and for the 

boundaries p ’ = 1 of the domain Da and q4 = 0 of the domain D,. 

iet us begin our investigation of the derivative (T,)’ with the domains 17, and D,, 
where T, - Y3. We write the derivative as 

(TJ’ = (T3)’ = (1 + ws2)--1 (1 - q2 - ayJ-2 [q* (1 - lj2 - ay2) -- 

.-- rll (% + aI4 + (111 $ I 4 I) (111-w,) + (VI-- j Cl I) (Tj1y2 - 112y1 $-y1)] 

where 
w3 = (71 + q1) / (1 - 72 - cIy2) 

It is easy to show that wa is preserved for all IL < 0, zi> O1 whether impulsive or 

finite. The terms of the derivative (T,)’ which contain z+ are negative for 2’, < 0 ; 
the terms containine II. ___ 0 are positive. Similarly, for u =I !t26 >. Oand c=v26<0 

we infer that AT, (pa6 >a 0) > 0, AT, (~~6 < 0) < 0. On first inspection the 
derivative (T ,)’ appears to be independent of the controls for u1 < 0 and V, ,>. 0 . 
However, this is not true for impulsive controls U, - ~~6 < 0 and ZJ = ~18 >- 0, 
since this case entails the variation of a component of the derivative (T ,)’ which does 

not contain 11 and 2’ . 
Denoting the ratios which are preserved for I( = p16 < 0 by 

Wl = 111 / (1 - vz), q? = CL / (1 - qz) 

we can rewrite the derivative as 

(T,)’ = (2 + was)-r 111: i (1 - ~2) (1 - zcZyZ)-’ - w1 (w, -:-- wZyl) :: 

\’ (1 - wzrZ)-“] 

This derivative attains a minimum with respect to P_L~< 0 for the same value as that 
which minimizes the quantity ~a. It is clearly equal to the 11~. given by (2. 5), since 

according to (1.5) the quantity Q’ is minimal for the maximum h. Now let us express 
(T ,)’ in terms of a and the quantities s, = ql + aylr ss = 1 - q2 - ay, which 
are preserved for 71 == v16 > 0 , 

(T.& = (1 - wg2)-l [s2 - sIB - s2’ -t_ a (sly1 - s2y2)1s,-” 

The expression sryr - .~~:‘a -= I$~:: 0 in the domains D,, D,, so that (T,)’ attains 
its maximum at cz = 0, i.e. for vI = Y > 0. We conclude from this that the relations 

min max (T::)’ max rnin (T3)* .= - I == (T3)’ (r_ll”. vlc) 
PI‘.0 ‘L 0 ‘,,‘O LLt,.o 

are valid. 
We can now draw the final conclusion that the inequalities 

T (7P, 2:) L, T, (u“, v”) x< T (u, 8) (3.2) 

are valid in the domains D, and u4 , i. e. that u’, v” realize the saddle point of the 

game. 
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In the domain Dz the function T c = Tz + 29 ; in the domain D1 the function 

T, = Ts + T, + 2q1. Noting that T e (~1, WZ) depends solely on the ratios w1 and 
wz and denoting the partial derivatives with respect to these variables by T1 and T’, we 
can write (T J’ as 

(TJ = T’ VZ! (1 -Q) - T1wla - T2wlwz +-PI (4 +P2 (u) 

PI (4 = (1 - r12)-’ (v + I UI I) (Tlql + T2a) (3.3) 

Pz (v) = (1 -Q)-~ [v,T1 (~2 - qzyr +yd + Ta (aqy, - 

- I Vl I (1 - 112111 

Let us assume that T1 > 0. This assumption is valid for small a by virtue of conti- 

nuity since a = 0 T, = 2 arctg [TJ~/ (1 - Q) for a = 0 , and since the derivative 

l_ = 1 - q2 > 0 is positive. 
If T1 > 0, the value (2 J attains its minimum for p1 < 0 for the minimal ‘12. 

The minimal Q is realized for u” = ~~‘6 chosen in accordance with (2.3). 

We can express this fact in the form 

T, (plo))’ = min (T,)’ 
PI<0 

Let us introduce the new variables 1, and 1s according to the formulas 

II = rllY1 f%Yz, 12 = -%Yz +rlzy1 

and prove the validity of an ancillary assumption. 
3.1. If the initial point WI* > 6 wz” lies either in the domain D, or in the part of 

the domain D, defined by the inequality 

--h,“ct - rlz)+ 4&+112+ [1 -&“(I -Q)12 - 

- hw--1 - [I - A,” (1 - %)I *(z < 0 (3.4) 

then the variation 6T of the time associated with variations of the variables restricted 

by the conditions 612 = 0, 6a = - 81, > 0 is positive. 

Proof. If the point lies in the domain D2, the indicated variations leave it in this 

domain and the impulse plo remains constant (since it depends only on 12 and I, + a, 
and since the latter quantities are preserved). In addition, we can show by direct com- 

putation that the variations 612’, Al,', 6a obtained after the impulse p: also satisfy 

the conditions 6Z2’ = 0, --6a’ = 6Zl’ < 0. From now on we shall omit the primes 
and define the variations of quantities as their total variations and not their linear appro- 

ximations. Computing the variation 6ulo by formula (2.4) for z? = 0, we obtain 

6ulo = Z2’da / (1 - rz’ - a'y,) < 0 (3.5) 

since 12’ ,< 0 in the domain D2. Omitting the primes accompanying the variables, 
we obtain the variation Sl,’ , 

sl; = --6Z, + Z,6 1~: ( +y16ulo = 6a (4 +a) (h +a - y2b (3.6) 
x(1 - q2 - ay2)-' > 0 

Inequality (3.6) is valid by virtue of the fact that all of the factors are positive in the 
domain Dz for 6a > 0 . The variation of the expression 

6 (da 0 /dZ2)=6[a(u,“ll(--I, +E2IU10l +~1”?41<0 (3.7) 
satisfies inequality (3.7) by virtue of the fact that the positive numerator and negative 
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denominator increase in accordance with (3.5) and (3.6). This means that the function 

a (ls, &,,, a,,) increases monotonically in a,along a trajectory for any /s, Zz,, until the 

equation wr = E is realized. Hence, if the equation w1 = E: is not realized on the 
initial trajectory, the inequality (3.6) is valid at all its points, so that the straight line 

1s =: - cos ‘p (i.e. the straight line (&as)) , which is the boundary of the domain Ds 

or Dais attained earlier on the initial trajectory than on the varied trajectory. On the 
other hand,if the value wr=x is attained at the point lz” on the initial trajectory, then this 

value lsn is attained earlier than on the varied trajectory, and the representing point of 
the initial trajectory from then on moves along the straight line w1 = E, reaching the 

boundary of the domain 0s or D, earlier than does the point of the initial trajectory. 
~ ,I Thus, bl s > 0 in the domain Ds. If the variables lie in the domain D1, we can show 

that the variation 6T1 is positive by direct computation. The variation da’ = 6ah,“$ 

+ aah,’ + 6a6h,” also turns out to be positive under condition (3.4). Since the quan- 

tity a’ is preserved on the trajectory. the following conditions are realized at the instant 
T, -i_ 6T, at the boundary of the domain D, : 

612 (T, +6T,) = 0, 6a (Tl -+ 8T,) =: --61, (T, + dT,) >- 0 

Hence, by what we have just proved, 6T, _\ 0 and the variation 6T, = 6T, $ 
+ 6Tz > 0 is positive. Completing our proof, we note that inequality (3.4) assumes 

the form 112’ - 1 + r/~rlIf” + T)Z’z - I,’ < 0 after the realization of u = pro6 

taken in accordance with (2.2). Since the quantity qrlz + Q’~ is preserved along the 

trajectory and since the quantities ~‘and -Z1 diminish, inequality (3.4) is not violated 

along the trajectory. The proof is now complete. 

Writing out the variation 6 T E, we obtain (in accordance with 3.1) the inequality 

bf, = - &CC (1 - Q)-’ IT1 (thya - vzyl + vI) -I- 

t T2 (7s + ay, - I)1 + 0 (6~) ;b. o (3.8) 
3.2. The following three estimates are valid: 

P2 (v) < 0 (3.9) 

T2 > 0 (3.10) 

PI (u >-, 0) > 0 (3.11) 

Proof. Estimate (3. 9) follows from (3. S) ; estimate (3.10) follows from (3. 9), the 
fact that TL > 0, and the estimates 

9171 + -r? (1 - %) > 0, 1 - '12 - a 7, > 0 

which are valid in the domain D,. Estimate (3.11) follows from (3. S), Tr>O. and (3.10). 
If u < 0, the estimate (3. 9) becomes a strict inequality, p)2 (L. < 0) < 0 . This follows 

from (3. 8), 1’1 > 0 ‘and (3.10). 
3.3. bet us denote the quantity 7’” = lim T, as e - 0 by T” . This function satis- 

fies estimates (3,2), . . . , (3.11). We need not prove this intuitively obvious statement. 
bet us introduce the domain D, 137” / dw, -= 7’“’ \ 01 formed out of the domain 

L),O [To1 (a = 0) >, 01 by continuous variation of a, the domain D4 [w, > ~1 , and 
the domain D6 = D, iJ D,. We can now formulate the following theorem. 

Theorem. If z TV-- Dg, the estimates 

l’, (uO, v”) k; T (IL, v”) (3.12) 
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T (u”, v) < 2’” (3.13); T, (u”, v”) > T, (u”, 9) (3.13) 

are valid. Here’s* is a control which together with u” leaves the point in the domain L),. 
Proof. All of the statements of the theorem follow directly from previous statements 

3.1, 3.2, 3.3 and from the results of integrating the corresponding minimax and maxi- 

min differential inequalities which we shall not write out here, Differential inequalities 

and the mean-value theorem can be applied to Cj-function type controls u = VZS or 
u = p.$ . This yields the inequalities AZ' (vz/plo) < 0 and AT (vzo, p.J > 0. The proof 
is complete. 

The need to verify the inequality TOI> 0 leaves something to be desired, as it cannot 
be verified directly ; all we can do is refer to coarse sufficient condition (3.4) which 
guarantees the estimate To1 > 0. 

The results of calculations by computer for qr = 0 appear in Fig. 2. The quantity Toi 

at the surface R f a = i vanishes for the first time 

BI at the curve (al, 0). Moreover, the lines (c,, &), 
(ca, dr) indicate that the control v” is optimal, and 

Fig. 2 Fig. 3 

that To1 > 0 even in the domain where inequa~~ (3.4) is violated. 
Until now we assumed that the angle cp was acute. If it is obtuse or a right angle, the 

domain Ds vanishes and the right end g, of the arrow (g, , g, gz) becomes the left end. 

It is therefore sufficient to replace sin cp, cos cp by -sin cp, - cos cp in all the 
formulas ; no other changes are required. Our analysis of the problem is now complete. 

4. We shall cite the results of our analysis of the second example without detailed 
proofs. The equations of motion in this case are 

711 * = r12 + ‘11 I 261 I + SYl, q2’ = rlz I Ul I + % + V1Ya 

The restrictions imposed on the controls are the same as in Sect. 1. Once again, we con- 
fine our attention to the domain q&O. Figure 3 shows several possible vectors 

(gl, g, gs), (cl, c, c2f .etc. 
It is clear that if one of the arrow ends g1 or g2 either lies on the open half-line 

(a,, a21 or intersects the open half-line (b,, ba], the impulse v = + ~6 directed in 
the appropriate way will take the point outside the attainability doma% of zero [S], and 
pursuit cannot be completed. The vector (jL, f,fs), for which the impulse V’ = - ~8 
directed towards the point fs intersects the segment rb = 0, 1 ?jz 1 < 1 and leads to 
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encounter according to the definition of Subsect. 1.1, remains doubtful. Nevertheless, 
we can show that in this case one of the ends fi or fs will reach the straight half-lines 

(% %I; lb,, b,] before encounter for any control ‘21” and v = 0 . This enables us to 

make the iollowing statement. 

4.1. If we set v” equal to zero as long as the closed segments with the origin qi, r]2 

and the components-& olyl, -& ayado not intersect the straight half-line (b,, b,] and 
have no points in common with the half-line (a,, a21 , and set zf = j, v& when one 

of these conditions is violated, then pursuit for an acute angle cp cannot be completed 

if these conditions are violated at the initial instant. Pursuit cannot be completed for 
an obtuse angle9 either if these conditions are violated at the initial instant or if at the 

initial instant Es + aya > 1. 

Let us cite the formulas for the optimal controls and optimal time without a detailed 

argument. We assume that all of the inequalities violating the conditions adopted in 

4.1 are fulfilled without actually writing them out. 

4.2. The angle QI is acute. The control U* = &&1’S in the domain Dr [$i = Q - 

- a~2 > 01 is of the form 

h,” = 2 / (1 --2 +a sin cp), h1° = CL / (p - I cLl@ I) (4.4) 

If iti* = 1, the y’ taken from the condition (&“) = 0 is of the form 

Ui” = - ('/2) (Vl -t I Vl I) Yz (4.2) 

In the domain Da (9i < 0) we have 

aa” = 2 f (1 - ri2 + rtl tg 9% U1° = riz tg cp i (1 -7f21 

The control v” = ~8 everywhere. 
The above controls correspond to the saddle point of the game, and the optimal time 

is given by To ($, 7~“) = 2 (ql + a cos cp) I (1 - q2 - a sin rp) 

4.3. The angle 9) is obtuse. The control ~“is given by formulas (4. I) and (4.2). The 

control v” = 0 for w1 > E, and must be found from the condition w,” = 0 in the form 
u” = r12 f h1 - Ey2) for wx = i5 . We have a theorem analogous to that of Sect, 3, 
and the limiting value T” = fim T, as E -+ 0 is given by the formula 

T" = ql/ (1 - T2YJ 4 ctg cp ln ](I - ‘tl2 - ays) / (1 - rlz + ay2) 

Since the derivative To1 is positive and since the restrictions on initial values of the 

type (3.4) are not essential in this case, the theorem analogous to the theorem of Sect. 
3 can be formulated without reference to any not readily verifiable conditions under 

which the point belongs to a domain analogous to the domain Ds. 
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